Question Paper Code: 27194

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fourth Semester

Electronics and Communication Engineering

EC 6403 - ELECTROMAGNETIC FIELDS

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Find the electric field intensity E at (111) if the potential is $V = xyz^2 + x^2yz + xy^2z(V)$.
- 2. State Gauss law and write its applications.
- 3. What are the boundary conditions for electric field at the perfect dielectricconductor interface?
- 4. Find the energy stored in the 20pF parallel plate capacitor with plate separation of 2 cm. The magnitude of electric filed in the capacitor is 1000 V/m.
- 5. State Biot-Savart law.
- 6. Derive point form of Ampere's circuital law.
- 7. In a ferromagnetic material $(\mu = 4.5 \,\mu_0)$, the magnetic flux density is $B = 10 \, y \, a_x \, m \, Wb / \, m^2$. Calculate the magnetization vector $(\mu_0 = 4\pi \times 10^{-7} \, H/m)$.
- 8. What is the energy stored in a magnetic field in terms of field quantities?
- 9. What are the Maxwell's equations for free space medium?
- 10. In a medium, the electric field intensity is $E = 10\sin(1000t 10x)\alpha_r V/m$.

 Calculate the displacement current density $(\varepsilon_r = 80, \varepsilon_0 = 8.854 \times 10^{-12} F/m)$.

11	. (a)	(i) State and explain Divorces
		(i) State and explain Divergence theorem. (ii) Determine the electric g
		(ii) Determine the electric flux density D at (1,0,2) if there is a point (8) charge 10mC at (1,0,0) and a line charge of 50 mC/m along
		charge 10mC at (1,0,0) and a line charge of 50 mC/m along y axis.(8) Or Or
	(h)	
	(b)	(i) Derive the expression for
		(i) Derive the expression for energy stored in an electrostatic field, in (ii) The two point characteristics.
		(ii) The two point charges $10 \mu\text{C}$ and $2 \mu\text{C}$ are located at (1,0,5) and potential at infinite.
- 12.	(a)	at 1111111ty assuming general
	(a)	(i) Derive the expression for relaxation time by solving the continuity (ii) C. L
		equation. equation time by solving the continuity
		(ii) Calculate the relaxation time of mine (10)
		(ii) Calculate the relaxation time of mica $(\sigma = 10^{-15} S/m, \varepsilon_r = 6)$ and paper $(\sigma = 10^{-11} S/m, \varepsilon_r = 7)$.
		(6)
	(b)	(i) Derive the Poisson's equation.
		the roisson's equation.
		distribution consists of an in-
		radius 'a' and an outer conductor with spherical inner wall of radius is 'b'. The space between the conductors is filed with a dielectric of permittivity 'c'. Determine the
13.	(a)	An infinitely long, straight conductor with a circular group of
		tadius b carries a steady current T. Determine magnetic flux density
		both inside and outside the conductor. (16)
		Or
	(b)	(i) Derive the expression for vector magnetic potential in terms of
		current density. (10)
		(ii) For a current distribution in free space,
		$A = (2x^{2}y + yz) a_{x} + (xy^{2} - xz^{3}) a_{y} - (6xyz - 2x^{2}y^{2}) a_{z}(Wb/m).$
		Calculate magnetic flux density.
14.	(a)	(i) Explain about magnetization vector and derive the expression for
		relative permeability. (10)
		(ii) State and explain Ampere's force law. (6)
		Or
	(b)	Derive the boundary conditions of static magnetic field at the interface of (16)
	(0)	different magnetic medium.
15	(0)	D : the Maywell's equations both in integral form and unerential
15.	(a)	form Ampere's law, faraday's law and Gauss' law. (16)
		\mathbf{Or}
	4	State and explain the poynting theorem and derive the expression for (16)
	(b)	poynting vector.
		poyntains